

High-Energy Picosecond Laser PICOPOWER[™]-RG1-1064-10K

ALPHALAS PICOPOWER®- RG1-1064-10K

he **PICOPOWER™- RG1-1064-10K** picosecond laser delivers ultrashort pulses with high energy, high

peak and average power at 1064 nm wavelength with variable repetition rates from single shot to 10 kHz. It features a unique synchronization capability with unsurpassed 3.5 ps jitter for pulses on demand. Optional wavelengths at 532 nm, 355 nm and 266 nm are available collinearly or as multiple output beams. The distinctive features of this laser are excellent power, pulse-to-pulse and beam pointing stability, diffraction-limited output beam, pulse-on-demand triggering and peak power of more than 2 MW with less than 30 W electrical power consumption. It is an ideal choice for numerous applications, including micro-machining of metal and nonmetal materials, semiconductor wafer inspection, carving, nonlinear optics, ultrafast spectroscopy and many others.

Features

- Single or multiple outputs at **1064 nm, 532 nm,** 355 nm or 266 nm wavelengths
- Unsurpassed **3.5 ps rms jitter** to external trigger
- Less than **30 ps** pulse width
- **50 μJ** pulse energy at 1064 nm •
- More than **2 MW** peak power at 1064 nm
- Internal and external trigger •
- Air-cooled, compact and cost effective •
- Excellent Gaussian TEM_{on} beam profile
- Variable repetition rate

Applications

- High-speed and precision micro-machining (glass, silicon, plastics, etc.)
- Fluorescence lifetime measurements •
- Multi-photon non-linear microscopy
- Marking, carving and 3D engraving •
- Time-resolved spectroscopy
- Terahertz imaging
- Nonlinear optics

LASERS, OPTICS, ELECTRONICS MADE IN GERMANY WWW.ALPHALAS.COM

High-Energy Picosecond Laser: PICOPOWER™-RG1-1064-10K

Technical Specifications: 1	Турі
OPTICAL and ELECTRICAL CHA	RAC
Parameter	U
Wavelength	n
Pulse Energy, single shot to 5 kHz	ł
Pulse Energy @ 10 kHz	ł
Pulse Width, single shot to 10 kHz	F

Technical Specifications: Typical Values							
OPTICAL and ELECTRICAL CHARACTERISTICS							
Parameter	Unit	Fundamental	Harmonics (optional)				
Wavelength	nm	1064	532	355	266		
Pulse Energy, single shot to 5 kHz	μJ	55	33	16	12		
Pulse Energy @ 10 kHz	μJ	50	29	13.5	10		
Pulse Width, single shot to 10 kHz	ps	< 30	< 30	< 25	< 25		
Peak Power, single shot to 5 kHz	MW	2.3	1.7	0.9	0.7		
Peak Power @ 10 kHz	MW	2.1	1.4	0.8	0.6		
Average Power @ 10 kHz	mW	500	290	135	100		
Long Term Power Stability (8 hrs)	%, rms	< 1.0	< 2.0	< 3.0	< 4.0		
Pulse-to-Pulse Energy Stability	%, rms	< 1.0	< 2.0	< 3.0	< 4.0		
Beam Diameter, 1/e ²	mm	1.4 Available on request					
Polarization (linear)	%	> 99.5	> 99.9	> 99.9	> 99.9		
Beam Divergence	mrad	< 1.2	< 2.0	< 3.0	< 3.0		
Beam Pointing Stability (rms)	µrad	< 30	< 30	< 30	< 30		
Pre-Pulse Contrast Ratio ¹⁾		> 10 ³ : 1	> 10 ⁵ : 1	> 107: 1	> 109: 1		
Post-Pulse Contrast Ratio ¹⁾		> 10 ² : 1	> 10 ³ : 1	> 105: 1	> 10 ⁷ : 1		
Spatial Mode / M ²		$TEM_{00} / M^2 < 1.2$ $TEM_{00} / M^2 < 1.5$					
Repetition Rate	kHz	Single shot to 10 kHz					
Internal Trigger Repetition Rate	kHz	0.1 10					
External Trigger Repetition Rate	kHz	Single shot to 10 kHz					
External Trigger Specifications		TTL (4.5 5.5 V on 50 Ω load) Rising edge: < 10 ns; Pulse width: min. 250 ns, max. 1.3 μs					
Delay of Laser Pulse to TRIG IN	ns	~ 500					
Optical SYNC OUT Pulse	ps	Optional, jitter < 1 ps, rise time < 50 ps					
Electrical SYNC OUT Pulse		+5 V on 50 Ω load					
Jitter of Laser Pulse to External Trigger	ps, rms	3.5					
Delay SYNC OUT to Laser Pulse	ns	Adjustable from -100 to +1000					
Jitter of Electrical SYNC OUT Pulse	ps	50					

MECHANICAL CHARACTERISTICS

	Dimensions	Weight				
Laser Head	165 x 95 x 700 mm ³	10 kg				
Laser Diode Driver	130 x 65 x 105 mm ³	1 kg				
Control Unit	105 x 65 x 105 mm ³	1 kg				
GENERAL CHARACTERISTICS						
Power Requirements	+12 V DC, 5 A or 100 240 VAC with AC/DC adapter					
Power Consumption	< 30 W					
Operating Temperature Range	15°C – 35°C					
Cooling	Passive (convection)					
Typical warm-up time	< 15 min					
Beam height	Min. 93 mm, max. 103 mm, adjustable					

Note: ¹⁾ Peak-to-peak with respect to residual pulses.

LASERS, OPTICS, ELECTRONICS MADE IN GERMANY www.alphalas.com ALPHALAS

High-Energy Picosecond Laser: PICOPOWER™-RG1-1064-10K

Performance of PICOPOWER[™]-RG1-1064-10K: Typical Values

Pulse width and peak power at different repetition rates for 1064 nm wavelength.

Peak power at 1064 nm and its harmonic wavelengths at 10 kHz repetition rate.

Pulse width at 1064 nm wavelength before deconvolution measured with 30 GHz photodetector.

Pulse energy at different repetition rates for 1064, 532, 355 and 266 nm wavelengths.

Average power at different repetition rates for 1064, 532, 355 and 266 nm wavelengths.

Spectral bandwidth at 1064 nm wavelength.

Lasers, Optics, Electronics Made in Germany www.alphalas.com

High-Energy Picosecond Laser: PICOPOWER™-RG1-1064-10K

Performance of PICOPOWER[™]-RG1-1064-10K: Typical Values

Long-term power stability at 1064 nm wavelength.

Beam pointing stability at 10 kHz repetition rate.

3D and 2D far-field beam profile measured at 540 mm distance from laser head for 1064 nm wavelength.

1D cross section and Gaussian fit showing nearly 95% overlap.

Beam quality measured at maximum output power according to ISO 11146 standard (\pm 5%).

 $M_{eff}^{2} = 1.02$ Div_{eff} = 0.93 mrad BPP_{eff} = 0.34 mrad*mm $z0_{eff} = 1551 \text{ mm}$

> LASERS, OPTICS, ELECTRONICS MADE IN GERMANY WWW.ALPHALAS.COM

Options and further specifications are available upon request. Specifications in this data sheet are subject to change without notice. No responsibility for typing or printing errors. ALPHALAS GmbH reserves the right to make changes without further notice to any products herein. ALPHALAS GmbH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ALPHALAS GmbH assume any liability arising out of the application or use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in ALPHALAS GmbH acts sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. ALPHALAS GmbH products are only accur. Therefore, ALPHALAS GmbH products are not designed, intended, or authorized for use time medical, surgical or any other human *in vivo* applications, or for any other application in which the failure of the ALPHALAS GmbH products are a situation where personal improvo cust. Therefore, ALPHALAS GmbH products must not be used in usit on applications (e.g. in life support systems, in aviation, in nuclear facilities, in weapon systems, in safety or security systems, etc.). ALPHALAS GmbH products must not be used where damage to property may occur.