

SpecificationsTest conditions $V_s = \pm 15 \text{ V}, T_A = 25 ^{\circ}\text{C}, \text{ load it}$ GainTransimpedance $1 \times 10^2 \dots 1 \times 10^8 \text{ V/A} @ 50 \Omega$ Gain accuracy $\pm 1 \%$ Frequency ResponseLower cut-off frequency Upper cut-off frequencyDC / 100 Hz, switchable depending on gain setting up t switchable to 10 MHz or 1 MHInputEqu. input noise current Equ. input noise voltage Input bias currentsee table below typ. 2.8 nV/√Hz Upper cut-off frequency (V/A)Performance depending on Gain SettingGain setting (low noise) (V/A) $10^2 10^3 10^4$ Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) Input noise current density (/√Hz)200 MHz 80 MHz 14 MHz 1.8 nsHz1 MHz MHz1 MHz1 MHz 1 MHzInput noise current (fMS)*2.5 µA 2.5 µA280 nA 25 nA Max. input current (±)DC input impedance50 Ω 50 Ω 60 Ω	2 load to 200 MHz łz 10 ⁵		10 ⁷			
Gain accuracy $\pm 1 \%$ Frequency ResponseLower cut-off frequency Upper cut-off frequencyDC / 100 Hz, switchable depending on gain setting up t switchable to 10 MHz or 1 MHInputEqu. input noise current Equ. input noise voltage Input bias currentsee table below typ. 2.8 nV/ \sqrt{Hz} typ. 20 pAPerformance depending on Gain SettingGain setting (low noise) (V/A) 10^2 10^3 10^4 Upper cut-off frequency (-3 dB) Input noise current density (/ \sqrt{Hz})200 MHz80 MHz14 MHzUpper cut-off frequency (-3 dB) 	to 200 MHz łz 3.5 MHz 0.1 µs 480 fA 10 kHz 3.0 nA 10 µA	10 ⁶ 1.8 MHz 0.2 μs	10 ⁷			
Upper cut-off frequencydepending on gain setting up t switchable to 10 MHz or 1 MHInputEqu. input noise current Equ. input noise voltage Input bias currentsee table below typ. 2.8 nV/ \sqrt{Hz} typ. 20 pAPerformance depending on Gain SettingGain setting (low noise) (V/A) 10^2 10^3 10^4 Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) 1.8 ns 4.4 ns 25 ns Input noise current density (/ \sqrt{Hz}) 180 pA 11 pA 1.8 pA measured at Integr. input noise current (RMS)* $2.5 \mu A$ 280 nA 25 nA Max. input current (\pm)	10 ⁵ 3.5 MHz 0.1 μs 480 fA 10 kHz 3.0 nA 10 μA	10 ⁶ 1.8 MHz 0.2 μs	10 ⁷			
Equ. input noise voltage Input bias currenttyp. $2.8 \text{ nV}/\sqrt{\text{Hz}}$ typ. 20 pA Performance depending on Gain SettingGain setting (low noise) (V/A) 10^2 10^3 10^4 Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) 200 MHz 80 MHz 14 MHz Input noise current density (/ $\sqrt{\text{Hz}}$) 18 ns 4.4 ns 25 ns Input noise current density (/ $\sqrt{\text{Hz}}$) 180 pA 11 pA 1.8 pA measured at1 MHz 1 MHz 1 MHz 1 MHz Integr. input noise current (RMS)* $2.5 \mu A$ 280 nA 25 nA Max. input current (±) 10 mA 1 mA 0.1 mA	3.5 MHz 0.1 μs 480 fA 10 kHz 3.0 nA 10 μA	1.8 MHz 0.2 μs				
On Gain SettingUpper cut-off frequency (−3 dB)200 MHz80 MHz14 MHzRise/fall time (10 % - 90 %)1.8 ns4.4 ns25 nsInput noise current density (/√Hz)180 pA11 pA1.8 pAmeasured at1 MHz1 MHz1 MHzIntegr. input noise current (RMS)*2.5 µA280 nA25 nAMax. input current (±)10 mA1 mA0.1 mA	3.5 MHz 0.1 μs 480 fA 10 kHz 3.0 nA 10 μA	1.8 MHz 0.2 μs				
Upper cut-off frequency (-3 dB)200 MHz80 MHz14 MHzRise/fall time (10 % - 90 %)1.8 ns4.4 ns25 nsInput noise current density (/ \sqrt{Hz})180 pA11 pA1.8 pAmeasured at1 MHz1 MHz1 MHzIntegr. input noise current (RMS)*2.5 μ A280 nA25 nAMax. input current (±)10 mA1 mA0.1 mA	0.1 µs 480 fA 10 kHz 3.0 nA 10 µA	0.2 µs	220 kHz			
	100 32	10 kHz 0.8 nA 1 μA 1 kΩ	1.6 μs 45 fA 10 kHz 60 pA 0.1 μA 10 kΩ			
Gain setting (high speed) (V/A) 10^3 10^4 10^5	10 ⁶	10 ⁷	10 ⁸			
Upper cut-off frequency (-3 dB)175 MHz80 MHz14 MHzRise/fall time (10 % - 90 %)2.0 ns4.4 ns25 nsInput noise current density (/ \sqrt{Hz})155 pA5.8 pA1.5 pAmeasured at1 MHz1 MHz1 MHzIntegr. input noise current (RMS)*1.9 μ A240 nA24 nAMax. input current (±)1 mA0.1 mA10 μ ADC input impedance50 Ω 50 Ω 60 Ω	3.5 MHz 0.1 μs 440 fA 10 kHz 3.0 nA 1 μA 100 Ω	1.8 MHz 0.2 μs 140 fA 10 kHz 0.8 nA 0.1 μA 1 kΩ	220 kHz 1.6 μs 45 fA 10 kHz 60 pA 10 nA 10 kΩ			
	* The integrated input noise is measured with an open but shielded amplifier input in the full bandwidth ("FBW") setting. The measurement bandwidth is 3 x the upper cut-off frequency at the specific gain setting; filter slope is a 1st order roll-off.					
The peak-to-peak noise can be calculated from the RMS noise as Input referred peak-to-peak noise: $I_{PP} = I_{RMS} \times 6$ Peak-to-peak output noise: $U_{PP} = I_{PP} \times gain$						
Upper cut-off frequencies and equivalent input noise currents give only which will depend on the source capacitance. Keep the source by using short cables at the input to achieve best possible bandw the dependence of the upper cut-off frequencies on the source ca diagrams on the next page.	ce capacita <i>r</i> idth and nc	ance as lov bise perfori	v as possib mance. For			
OPHISTICATED TOOLS FOR SIGNAL RECOVERY			го			

Variable Gain **High-Speed Current Amplifier** Dependence of upper cut-off frequency on source capacitance Specifications (continued) 1000 10² V/A Low Noise 10³ V/A High Speed 100 Bandwidth [MHz] 10³ V/A Low Noise 10⁴ V/A High Speed 10 1 100 10 1000 1 Source capacitance [pF] 100 10⁴ V/A Low Noise Bandwidth [MHz] 105 V/A High Speed 10 105 V/A Low Noise 10⁶ V/A High Speed 1 10 1 100 1000 Source capacitance [pF] 10 10⁶ V/A Low Noise 107 V/A High Speed 1 Bandwidth [MHz] 107 V/A Low Noise 0.1 10⁸ V/A High Speed 0.01 10 100 1000 1 Source capacitance [pF] Π Π 0 SOPHISTICATED TOOLS FOR SIGNAL RECOVERY M

Output	Output voltage range Output impedance Slew rate Max. output current Output offset compensation	± 1 V (@ 50 Ω load), for linear amplification 50 Ω (designed for 50 Ω load) 1,000 V/µs ± 40 mA adjustable by offset potentiometer and external control voltage, output offset compensation range min. ± 100 m		
DC Monitor Output	Monitor output gain	Mode Monitor gain		
		low noise high speed	gain setting divided by –1 gain setting divided by –10	
	Monitor output polarity Monitor output voltage range Monitor output bandwidth Monitor output impedance	inverting ±1 V (@ ≥1 MΩ DC 1 kHz 1 kΩ (designed f		
Detector Bias	Bias voltage range	± 10 V, max. 22 mA, connected to shield of BNC input socket, adjustable by potentiometer, switchable to GND		
	Warning	A bias current of 20 mA may destroy sensitive detectors Please pay attention to the correct polarity and careful adjustment of the bias voltage to protect your detector. Put the bias switch to GND (ground) if you do not want to use the internal bias voltage. The positive and the negative supply voltage of the amplifier must be switche "on" and "off" simultaneously in order to avoid overvoltage at the bias output.		
Bias Voltage Monitor Output	Description	Sub-D control soo voltage present o monitoring the sig can be adjusted t the bias switch is	bias voltage monitor output (pin 7 of the cket) is identical to the detector bias n the shield of the input BNC socket. By gnal on pin 7 the desired bias voltage hrough the bias potentiometer. Even if set to "GND", the bias voltage can be it to the desired value.	
	Monitor output polarity Monitor output voltage range Monitor output impedance	± 10 V (@ ≥1 MΩ 1 kΩ (designed f		
Indicator LED	Function	overload		
Digital Control	Control input voltage range Control input current Overload output	0 mA @ 0 V, 1.5 non active: <0.4	+1.2 V, HIGH bit: +2.3 V +12 V mA @ +5 V, 4.5 mA @ +12 V I V @ 0 –1 mA 5 5.1 V @ 0 2 mA	
Ext. Offset Control	Control voltage range Offset control input impedance	±10 V 15 kΩ		
Power Supply	Supply voltage Supply current	± 15 V typ. +110 / -90 mA (depends on operating conditions,		
	Stabilized power supply output		wer supply capability min. ±200 mA) nA, +5 V, max. 50 mA	

	myn-speeu	
Specifications (continued)		
Case	Weight Material	320 g (0.74 lb.) AlMg4.5Mn, nickel-plated
Temperature Range	Storage temperature Operating temperature	-40 °C +100 °C 0 °C +60 °C
Absolute Maximum Ratings	Signal input voltage Transient input voltage Control input voltage Power supply voltage	±5 V ±1.5 kV (out of a 1 nF source) -5 V / +16 V ±20 V
Connectors	Input	BNC, isolated, jack (female)
	Output	BNC, jack (female)
	Detector bias output	shield of input BNC
	Power supply	Lemo [®] series 1S, 3-pin fixed socket (mating plug type: FFA.1S.303.CLAC52) Pin 1: +15V Pin 2: -15V Pin 3: GND
		PIN 2 -VS PIN 3 GND
	Control port	Sub-D 25-pin, female, qual. class 2Pin 1:+12 V (stabilized power supply output)Pin 2:-12 V (stabilized power supply output)Pin 3:AGND (analog ground)Pin 4:+5 V (stabilized power supply output)Pin 5:digital output: overload (referred to pin 3)Pin 6:DC monitor outputPin 7:bias monitor outputPin 8:output offset control voltage inputPin 9:DGND (ground for digital control pins 10 - 16)Pin 10:digital control input: gainPin 12:digital control input: gainPin 13:digital control input: high speed / low noisePin 14:digital control input: high speed / low noisePin 15:upper cut-off frequency limit 1 MHzPin 17 - 25:NC
OPHISTICATED 1	TOOLS FOR SIGNA	AL RECOVERY F E X T O

Gain setting Gain settling time AC/DC setting	low noise Pin 14=LOW gain (V/A) 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} <80 ms coupling	9 "Bias / GND" high speed Pin 14=HIGH gain (V/A) 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} Pin 13		Pin 11 LOW LOW HIGH HIGH LOW LOW	llable. Pin 10 LSB LOW HIGH LOW HIGH LOW HIGH
Gain settling time	Pin 14=LOW gain (V/A) 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} <80 ms coupling	Pin 14=HIGH gain (V/A) 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8}	MSB LOW LOW LOW LOW HIGH	Low Low High High Low	LSB HIGH LOW HIGH LOW
-	10^{3} 10^{4} 10^{5} 10^{6} 10^{7} <80 ms coupling	10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸	LOW LOW LOW HIGH	low High High Low	High Low High Low
-	10 ⁵ 10 ⁶ 10 ⁷ <80 ms coupling	10 ⁶ 10 ⁷ 10 ⁸	LOW HIGH	HIGH LOW	HIGH LOW
-	10 ⁶ 10 ⁷ <80 ms coupling	10 ⁷ 10 ⁸	HIGH	LOW	LOW
-	10 ⁷ <80 ms coupling	10 ⁸			
-	<80 ms coupling		HIGH	LOW	нсн
-	coupling	Pin 12			TIGH
AC/DC setting					
	DC AC	LOW HIGH			
Low pass filter setting	upper cut-off frequ. limit full bandwidth 10 MHz 1 MHz		Pin 15 Pin 16		
			HIGH L	LOW LOW HIGH	
High speed / low noise setting	mode low noise mode high speed mode		Pin 14 LOW HIGH		

DHPCA-100

